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Abstract:  Remote arid areas are devoid of weather data which may be called fairly accurate.  They have to rely upon predictions in 
nearby cities, sometimes more than 300 kms away and that too in completely different demographic and physical structure.  It is 
important to establish alternative method of weather prediction.  Model based weather prediction is presented in this paper for such 
application.  It is based upon the principle of dynamic modelling and parameter estimation.  These parameters have no physical 
meaning but a change in their behaviour predicts the change in climatic condition.  The selection of model based upon forgetting 
factor is preferred after evaluating Akaike information criterion, Bayesian information criterion and, Deviance information criterion.  
It can be interpreted accordingly to predict the climate at local scale.  The methodology is based upon smaller data accumulation but 
provides fairly accurate results. 
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1. Introduction 
 
   The processes and systems in climatological prediction get 
more complex and difficult with our understanding of 
non-linear processes involved.  Here, however, high reliability 
is not required.  Short term weather predictions in remote 
areas are extrapolated from weather data collected at nearby 
cities, sometimes more than 300 km away with completely 
different geographical (physical) and demographic conditions.  
Remote sensing data are not cost-effective and reliable unless 
supported by ground observations, for such predictions.  It is 
neither practical nor economically feasible to establish and 
maintain weather station at remote area locations unless it is 
strategically important.  Forecast for short term period ranging 
from 3 to 7 days is likely to have decisive impact on sustainable 
developmental process and planning, especially when Very 
Large Scale Photovoltaic Systems and renewable energy based 
systems are being planned in remote areas and deserts.  Over 
the last decades, there has been considerable research activity in 
the field of model based reasoning especially for information 
poor processes.  Model based analysis (MBA) is based upon 
behavior descriptions and interconnections of the parameters 
affecting the whole system.  It can be understood as the 
interaction of observed and predicted values.  The basic idea 
of dynamic modelling can be described as a simple comparison 
between measured and modeled quantities.  A straight 

forward model structure can be obtained if the characteristics of 
each component in the system are described by equations 
derived from the basic laws of physics.  The number of 
parameters influencing climate is large and requires 
supercomputer for computations, which renders it enviable due 
to cost-effectiveness of requirement for remote areas. 
   Recursive Auto Regressive Exogenous (RARX) system 
identification methodology with forgetting factor is developed 
for such applications.  The model rectifies itself on the basis of 
noises in the system and can be trained with small data sets.  
The parameters of the model have no physical significance but 
their deviation can be used to predict the changes in the 
climatic condition.  They are easier to set up and require much 
less detailed information about the system to be modeled.  
However, for the identification phase, models may need rather 
rich data sets for a correct estimation of parameters, especially 
if it is a dynamic model.  Three criteria is used to evaluate the 
model and its number of parameters, Akaike information 
criterion, Bayesian information criterion and, Deviance 
information criterion.  The RARX model with fairly small no. 
of parameters with forgetting factor of 0.997 is found quite 
efficient and useful in the present case.  Forgetting factor 
allows discounting past information and reducing 
computational time and capacity for prediction of temperature 
on diurnal basis. 
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2. Model Formulation 
 
   A typical recursive identification algorithm is given by, 

))()((()()1( tytytKtn ′−+−′=′ θθ  (1) 

here, y’(t) is the parameter estimate at time t, and y(t) is the 
observed output at time t.  Moreover, y’(t) is a prediction of 
the value y(t) based on the observations up to time t-1 and also 
based on the current model.  The gain K(t) determines in what 
way the current prediction error y(t)-y’(t) affects the update of 
the parameter estimate.  It is typically chosen as, 
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where, φ(t) is (an approximation of) the gradient with respect to 
y of y’(t│θ).  The latter symbol is the prediction of y(t) 
according to the model described by y(t).  Q(t) is the matrix 
which determines the adaptation gain and the way parameters 
are updated.  The model structure like AR and ARX that 
correspond to linear regression can be written as, 
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where, the regression vector φ(t). contains old values of 
observed inputs and outputs, and e(t) is the noise source.  The 
most logical approach to the adaptation problem is to assume a 
certain model for how “true” parameter y’(t) changes.  A 
typical choice is to describe these parameters as a random walk, 
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here, ω(t) is assumed to be white Gaussian noise with 
covariance matrix, 

E[ω(t) ωT(t)] = R1 (5) 

where, R1 is variation of the variance.  Considering, 
underlying description of the observation, a linear regression, 
an optimal choice of Qn in “eq. 1 and 2” can be computed from 
the Kalman filter.  The above method is modified to discount 
old measurements so that the model adopts the changing 
situation dynamically.  An observation that is Γ samples old 
carries a weight that is R2

τ of the weight of the most recent 
observation.  Now, the model can be constructed with several 
parameters.  To decide the number of parameters, three major 
criterian are put forth in recent times.  These can be used for 
model selection. 
 
3. Model Selection 
 
3.1. Akaike information criterion 
   This criteria is used when relative measure of the 
information has lost while describing the real situation (Akaike, 
1974).  It can be said to describe the tradeoff between bias and 

variance in model construction.  In other words, it can be used 
for a trade off between accuracy and complexity of the model.  
AIC also provides a means for comparison among models for 
selecting the better structure.  However, it can tell nothing 
about how well a model fits the data in an absolute sense.  If 
all the models are bad, this criteria fails.  It is defined as, 

AIC = 2k – 2 ln (L) (6) 

here, k = the number of parameters in the model, and L = the 
maximized value of the likelihood function for the estimated 
model.  The preferred model is the one with the minimum 
AIC value.  AIC not only rewards goodness of fit, but also 
includes a penalty that is an increasing function of the number 
of estimated parameters.  This penalty discourages overfitting.  
Increasing the number of free parameters in the model 
improves the goodness of the fit.  AICc is AIC with a 
correction for finite sample sizes, 
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where, k denotes the number of model parameters.  Thus, 
AICc is AIC with a greater penalty for extra parameters 
(Burnham and Anderson, 2002).  If n is small or k is large it 
gives better rsult.  AICc converges to AIC as n gets large.  
AIC increases the probability of selecting models that have too 
many parameters, i.e., of overfitting when n is not many times 
larger than k2.  The time series models provides better result 
when AICc criteria is used (Brockwell and Davis, 2009).   
   The underlying errors should be normally distributed and 
independent.  This leads to χ2 model fitting, 
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   It reduces to,   
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where, C is a constant independent of the model used, and 
depends only on the use of particular data points.  i.e. it does 
not change if the data do not change.  The AIC is therefore 
given by, 
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here, C can be ignored since only differences in AIC are 
meaningful. 
 
3.2. Bayesian information criterion 
   Bayesian information criterion (BIC) is also used for model 
selection among a class with different numbers of parameters.  
To optimize BIC is a form of regularization.  When estimating 
model parameters using maximum likelihood estimation, it is 
possible to increase the likelihood by adding parameters, which 



may result in overfitting.  The BIC resolves this problem by 
introducing a penalty term for the number of parameters in the 
model.  This penalty is larger in the BIC than in the related 
AIC (McQuarrie and Tsai, 1998). 
   Let, x = the observed data; n = the number of data points in 
x, the number of observations, or equivalently, the sample size; 
k is the number of free parameters to be estimated, p(x|k) is the 
probability of the observed data given the number of 
parameters, L is the maximized value of the likelihood function 
for the estimated model.  Then, the BIC can be written as, 

)11()(lnln2)(ln2 nkLBICkxp ⋅+−=≈−
 

here, it is assumed that the model errors or disturbances are 
independent and identically distributed according to a normal 
distribution and that the boundary condition that the derivative 
of the log likelihood in respect to the true variance is zero, this 
becomes, 
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where σ2 is the error variance.  The error variance in this case 
is defined as, 
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   Under the assumption of normality the following, 
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   In any estimated model, the model with the lower value of 
BIC is more accurate.  The BIC is an increasing function of σ2 
and an increasing function of k.  This implies unexplained 
variation in the dependent variable and the number of 
explanatory variables increases the value of BIC.  Hence, 
lower BIC implies either fewer explanatory variables, better fit, 
or both.  The BIC generally penalizes free parameters more 
strongly than does the Akaike information criterion, though it 
depends on the size of n and relative magnitude of n and k. 
 
3.3. Deviance information criterion (DIC) 
   The deviance information criterion (DIC) is a hierarchical 
modeling generalization of the AIC and BIC.  It is particularly 
useful in model selections where the posterior distributions of 
the models have been obtained by Markov chain Monte Carlo 
(MCMC) simulation.  It is only valid when the posterior 
distribution is approximately multivariate normal (Claeskens 
and Hjort, 2008).  Let the deviance is defined as, 
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where y are the data, θ are the unknown parameters of the 
model and p(y│θ) is the likelihood function.  C is a constant 
which cancels out in all calculations that compare different 

models.  The expectation,  
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is a measure of how well the model fits the data.  A larger 
value means worse fit.  The effective number of parameters of 
the model is computed as, 
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where θ’ is the expectation of θ.  Its larger value makes it easy 
to model the data.  The deviance information criterion is 
calculated as, 
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   The models with smaller DIC should be preferred to 
models with larger DIC.  Models are penalized both by the 
value of D, which favors a good fit, but also by the effective 
number of parameters pD.  Since D will decrease as the 
number of parameters in a model increases, the pD term 
compensates for this effect by favoring models with a smaller 
number of parameters.  The advantage of DIC over other 
criteria in the case of Bayesian model selection is that the DIC 
is easily calculated from the samples generated by Monte Carlo 
simulation. 
 
4. Formulation and Forgetting Factor 
 
   To show the effect of forgetting factor and selection of 
parameter order in metereological parameter prediction, a 
model is formed to predict temperature profile in a typical 
summer day (April 21, 2010) at Muaffarpur, India.  System 
identification modelling are based upon identification of 
important input parameter affecting the output to be predicted.  
Present model is formulated with two input parameters, 
humidity and air flow and one single output parameter, 
temperature profile.  The model is trained with daily data 
collected of the three parameters over one month.  These data 
sets are used ten times with several forgetting factors. 
   Forgetting factor allows the model to remember its 
previous data and its effect on its prediction.  The model 
accordingly assigns weightage to the data remembered.  The 
forgetting factor R2 is also called as variance of the innovations 
e(t).  A typical choice of R2 is in the range of 0.97 to 0.997, 
which amounts to approximately remembering 33 to 333 last 
observations, respectively.  In the present case, a forgetting 
factor of 0..995 was selected.  The model, hence, remembered 
last 200 data in predicting the output. 
   MATLAB software is used to calculate the predicted value 
of the temperature profile.  The time frame used for prediction 
was one day, two days and three days.  Since the error 
function reintroduces error in prediction and changes  
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Fig. 1. Variation of temperature - (I) actual (S1), (II) predicted one day  in advance (S2), (III) predicted two days in advance (S3). 

 
dynamically the model itself, large error causes instability.  
Hence, as we move from one day to two days and three days, 
the model becomes more and more unstable and the error in 
prediction also increases.  In Figure 1 S1 shows the actual 
value of temperature profile.  S2 and S3 shows predicted 
values for one day in advance and two days in advance.  It can 
be easily observed from the figure that S3 has more instability 
as compared to actual data (S1) and one day prediction data 
(S2). 
   Result indicates that temperature can be predicted with 
90% accuracy for up to two days in advance.  It becomes 
unstable with deviation in forgetting factor.  The predicted 
data also becomes slowly unstable for more than two days.  
Nevertheless, sudden changes in climatological parameters 
need to be studied further as these are indicated by large 
changes in parameters.  Such changes can be interpreted in 
terms of impending dust storm or other harsh climatological 
changes to issue warning.  These predictions need to be 
quantified with large data accumulation and experience.  
Mostly climate in arid areas do not change suddenly except in 
case of storms.  Hence, at least five years would be preferred 

choice even from nearby meteorological station for setting up 
the initial model.  With experience and accumulation of 
further data, the model will refine itself continuously for better 
prediction. 
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