Soil CO₂ Flux from Desert Ecosystems in Western China Masaaki NARAMOTO*¹⁾ and Quan WANG¹⁾

Abstract: Soil CO₂ fluxes were measured in July 2010 at two sites in a desert ecosystem, southern Dzungaria Basin of Xinjiang, China. One site was located in irrigation fields, although seldom irrigated directly compared with neighboring fields. *Tamarix ramosissima* dominates in this site with fragment patchy distributions of salt accumulation. Soil CO₂ fluxes at bare soils, salt-accumulated and litter-covered areas were measured with a closed system, which was constructed from CO₂ gas analyzer, chamber and air pump. The other site was located 20 km away from the first site, which was covered by algae-lichen in a patchy fashion with the dominant shrub species of *Haloxylon ammodendron*. Soil CO₂ fluxes were measured at algae-lichen and litter-covered areas in this site. The results indicated that soil CO₂ flux ranged from -0.8 to 1.4 μ mol m⁻² s⁻¹ with higher soil CO₂ release at litter-covered areas under canopies in both sites. Soil CO₂ release at the litter-covered area in the first site was higher than that of the desert site. Soil CO₂ flux was found to be negative at bare soil and salt-accumulated area. Increase in soil CO₂ release with the increase in soil temperature was not identified from our results. On the contrary soil CO₂ flux in desert ecosystems.

Key Words: Algae-lichen, Litter, Salt accumulation, Soil CO₂ flux

1. Introduction

Soil CO₂ emission constitutes one of the main sources of CO₂ emissions to the atmosphere, accounting for about 25-35% of global annual emission (Bouwmann and German, 1998; Schlesinger and Andrews, 2000). Global soil carbon pool has been estimated at 2500 gigatons (Gt), which includes 1550 Gt of soil organic carbon, and this is 3.3 times the size of the atmospheric pool (760 Gt) (Lal, 2004). Generally, soil CO₂ emission and soil respiration increases with the increase in temperature (Epron et al., 1999; Conant et al., 2004). Therefore, response of soil CO₂ flux to warming is important for global carbon balance. On the other hand, some studies have described the soil surface absorbed CO₂ in arid and semiarid ecosystems (Wohlfahrt et al., 2008; Xie et al., 2009), although it is difficult to determine whether these results are representative or anomalous. Since arid and semiarid ecosystems covers more than 30% of the Earth's land surface, the effect of soil CO₂ flux in these ecosystems could be of great significance for evaluation of global carbon cycle.

The mechanism of soil CO_2 flux has many processes of CO_2 emissions and absorptions. Soil CO_2 emission and respiration is composed of an autotrophic component by roots, associated rhizosphere and a heterotrophic component by soil micro-organisms that decompose organic materials. Generally, temperature is a major environmental factor on soil respiration (Epron *et al.*, 1999; Conant *et al.*, 2004; Sponseller,

2007). However, soil water content can also be an important factor particularly during dry season in arid and semiarid lands (Conant *et al.*, 2004). Soil CO₂ absorption has a biological process via photosynthesis by soil crust and non-biological process at alkaline soils. Soil crust communities such as cyanobacteria, algae, mosses and lichens have considerable photosynthetic potential, although this is limited by the hydration status (Lange *et al.*, 1992; Lange *et al.*, 1998; Jia *et al.*, 2008). Xie *et al.*, (2009) has shown that alkaline soils absorbs CO₂ with a non-biological and inorganic process, and the rate of CO₂ absorption depends on the salinity, alkalinity, temperature and water content of the soil.

Despite existence of numerous studies on soil CO₂ flux (Wohlfahrt et al., 2008; Xie et al., 2009; Conant et al., 2004), available data is not sufficient to evaluate whether the results of these studies are a representative of arid and semiarid Soil CO₂ flux differs among surface type ecosystems. (Maestre and Cortina, 2003; Zhang et al., 2007). Spatial variation in soil CO₂ flux is especially important for the estimation of CO2 flux in ecosystems because resource distribution, conditions and organisms are markedly patchy in semiarid ecosystems (Schlesinger and Pilmanis, 1998; Maestre and Cortina, 2002). The main objective of this study was to compare soil CO_2 flux among soil surface types in the southern Dzungaria Basin. The results of this study can provide more information on evaluation of carbon cycle in arid and semiarid ecosystems.

1) Department of Environment and Forest Resources Science, Faculty of Agriculture, Shizuoka University

^{*} Corresponding Author: amnaram@ipc.shizuoka.ac.jp

⁸³⁶ Ohya, Suruga-ku, Shizuoka city 422-8529, Japan

Fig. 1. Map of study area.

2. Materials and methods

Measurements were conducted at two desert ecosystems located in the southern Dzungaria Basin of Xinjiang in China (Fig. 1) in July 2010. One location was in irrigation fields (44°17'N, 87°56'E), although seldom irrigated directly compared with neighboring fields. Tamarix ramosissima dominates in this site with fragment patchy distributions of salt accumulations. The other site was located about 20 km away from the first site (44°43'N, 87°90'E), which is covered by algae-lichen in a patchy fashion with Haloxylon ammodendron as the dominant shrub species. Soil CO₂ fluxes were measured at bare soils, salt-accumulated area and litter-covered area at the irrigation field site (from 7:30 - 20:00 Hours, on 28 July) and at algae-lichen area and litter-covered area in the other desert site (from 13:30 - 20:00 Hours on, 29 July and 10:00 - 20:30 Hours, on 30 July). The soil surface at bare soils did not have any litter as well as the salt-accumulated area. Air temperature and relative humidity were measured with a thermo recorder (RS-13, TABAI Espec, Japan) at 15-min intervals. The maximum and minimum temperatures were 36 and 16°C, respectively, with lowest relative humidity at daytime being $\sim 20\%$.

Soil CO₂ fluxes were measured with a closed system which was constructed from infrared gas analyzer (IRGA, LI-820, LICOR, USA), chamber (cylingder r=5.25cm, L=15.0cm) and air pump (EAP-01, Asone, Japan). The chamber was made by white vinyl chloride column which didn't allow sunlight to penetrate completely. Data of IRGA were recorded every 5seconds by the data logger (MR2031-MU, CHINO, Japan) with soil temperature (at 5cm in depth) during each measurement. Soil temperature was measured with thermocouple sensor (SCN05-113, CHINO, Japan). Soil CO₂ fluxes *Fc* (µmol m⁻² s⁻¹) were calculated by the following formula

$$Fc(t) = \frac{PV}{RTS} \cdot \frac{\Delta C}{\Delta t} \qquad (1)$$

- Fig. 2. Diurnal course of soil CO₂ flux in irrigation field site (left) and desert site (right). Closed circles (●): litter-covered area, closed triangles (▲): bare soil, open triangles (△): salt-accumulated area, open circles (○): algae-lichen area. Data are means ± SD (n=3).
- Table 1. Soil CO₂ flux at daytime (12:00-18:00) in irrigation field and desert site. Data are means \pm SD (n=8-22). Different lower case letters indicate significant differences by using Tukey-Kramer test after one-way ANOVA (*P*<0.05).

site	date	surface	$Fc \ (\mu mol m^{-2} s^{-1})$	
irrigation field	28 July	bare soil	0.01±0.19	с
		salt accumulation	-0.04±0.19	c
		litter	1.01±0.24	а
desert	29 July	algae-lichen	0.03±0.35	с
		litter	0.40±0.14	b
	30 July	algae-lichen	0.16±0.10	с
		litter	0.52±0.15	b

Where *P* is the air pressure (Pa), *V* is the chamber volume (m³), *R* is the molar gas constant (8.314 Pa m³ K⁻¹ mol⁻¹), *T* is the air temperature (K), *S* is the soil surface area (m²), *C* is CO₂ concentration (μ mol mol⁻¹).

3. Results and Discussion

Diurnal changes of soil CO_2 fluxes are shown in Figure 2. Soil CO₂ flux ranged from -0.8 to 1.4 μ mol m⁻² s⁻¹. Soil CO₂ releases under canopies at litter covered soil were higher than other surface type in both sites (P < 0.05). The soil CO₂ release at the litter-covered area in the irrigation field site was higher than the desert site (P < 0.05) and the average CO₂ flux during daytime (12:00 to 18:00) was 1.01 μ mol m⁻² s⁻¹ (**Table** 1). Zhang et al. (2007) had found out that soil respiration rate at T. ramosissima community was higher than sites dominated by H. ammodendron community throughout the year in western Dzungaria Basin. They also estimated the soil respiration rate to be 2.02 and 0.65 μ mol m⁻² s⁻¹ in July at *T*. ramosissima and H. ammodendron community, respectively. The higher CO_2 release at the litter-covered area during this study in the irrigation field site with T. ramosissima as the dominant shrub species was consistent with the results by Zhang et al. (2007), although the CO_2 release of this study was lower. In addition, soil CO₂ fluxes measured in this study were almost consistent with the soil respiration rate measured at the same area by Zhu et al. (2008). However, soil CO₂ flux was found to be negative at bare soil and salt-accumulated area at specific times. This was evident when the average soil CO₂ flux during daytime was -0.04 μ mol m⁻² s⁻¹ at salt-accumulated area (Table 1) with the minimum of -0.24 μ mol m⁻² s⁻¹ at 13:30. These negative values indicated that soil absorbs CO_2 in this ecosystem. Xie *et al.* (2009) reported that the rate of CO₂ absorption by alkaline saline desert soils increased with the increase in salinity and the soil CO₂ flux measured at saline desert in July ranged from -1 to 1 μ mol m⁻² s⁻¹. In the irrigation field site, the salinity of surface soils at salt-accumulated area was assumed to be higher than that at other area based on the surface salt accumulation features. The higher soil CO₂ absorption rate at salt-accumulated area was thought to be attributed to the higher salinity of surface soil although there was no significant difference in the rates between bare soil and salt-accumulated area. CO₂ absorption via photosynthesis by soil crust may be ruled out in this study since the chamber walls which were not transmissive reduced most of the incident light. The results of soil CO₂ flux at algae-lichen area might have been caused by soil respiration including dark respiration of soil crust communities. The lower soil CO₂ release at algae-lichen area might be thought to be due to the low amount of organic matter, litter and roots, including soil crust communities.

Generally, soil respiration increases with the increase in soil temperature. Contrary to the notion that soil CO_2 release increases with the increase in soil temperature, results from this study indicated that soil CO_2 release decreased with the increase of soil temperature (**Fig. 3**). Conant *et al.* (2004) described that soil respiration is related to temperature, but soil moisture can have an overriding influence particularly during dry season in semiarid lands. Soil respiration increases with the increase in soil moisture (Epron *et al.*, 1999; Conant *et al.*, 2004) and increases immediately after rewetting by precipitation (Sponseller, 2007). Dark respiration on projection area base for soil crust also increases with the increase in thallus water content (Lange *et al.*, 1998).

Fig. 3. Relationship between soil CO_2 flux and soil temperature in irrigation field site (left) and desert site (right). Closed circles (•) and dotted line: litter-covered area, closed triangles (\blacktriangle) and bold line: bare soil, open triangles (\bigtriangleup) and thin line: salt-accumulated area, open circles (•) and dashed line: algae-lichen area.

Therefore, water availability is a major driver of soil CO₂ flux in semiarid ecosystems. Although there was no rainfall during the measurement period, we found dew on the twigs of *T. ramosissima* in early morning on 24th July in the site at the irrigation field. Agam and Berliner (2006) described that the amount of dew can exceed that of rainfall for plants and hence adding water to the soil by dew formation and water absorption in arid lands. In addition, soil surface may trap water in the early morning, leading to water content at thin surface layer decreasing gradually from morning to afternoon. Our results suggested that temperature was not a major factor controlling soil CO₂ fluxes but water content at soil surface was more important on soil CO₂ flux in this ecosystem.

Acknowledgement

We are grateful to Prof. Chen Xi, Xinjiang Institute of Ecology and Geography CAS China, for his help in field experiments. This study was supported by Grant-in-Aid for Scientific Research (B) 21403001 from Japan Society for the Promotion of Science (JSPS).

References

- Agam N., Berliner P.R. (2006): Dew formation and water vapor absorption in semi-arid environments - A review. *Journal of Arid Environments*, **65**:572-590.
- Bouwmann A.F., Germon J.C. (1998): Introduction. *Biol Fertil Soils*, **27**: 219.
- Conant R.T., Dalla-Betta P., Klopatek C.C., Klopatek J.M., (2004): Controls on soil respiration in semiarid soils. *Soil Biol. & Biochemi.*, **36**:945-951.
- Epron D., Farque L., Lucot É., Badot O.M. (1999): Soil CO₂ efflux in a beech forest: dependence on soil temperature and soil water content. *Ann. For. Sci.*, **56**:221-226.
- Jia R., Li X., Liu L., Gao Y., Li X. (2008) Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China. *Soil Biology & Biochemistry*, 40:2827-2834.
- Lal R. (2004): Soil carbon sequestration impacts on global climate change and food security. *Science*, **304**:1623-1627.
- Lange O.L., Kidron E.L., Budel B., Meyer A., Kilian E., Abeliovich A. (1992): Taxonomic composition and photosynthetic characteristics of the 'biological soil crusts' covering sand dunes in the western Negev desert. *Fuct. Ecol.*, 6:519-527.
- Lange O.L., Belnap J., Reichenberger H. (1998): Photosynthesis of the cyanobacterial soil-crust lichen *Collema tenax* from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO₂ exchange. *Fuct. Ecol.*, **12**:195-202.
- Maestre F.T., Cortina J. (2002): Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. *Plant and Soil*, **241**:279-291.

- Maestre F.T., Cortina J. (2003): Small-scale spatial variation in soil CO₂ efflux in a Mediterranean semiarid steppe. *Applied Soil Ecology*, **23**:199-209.
- Schlesinger W.H., Pilmanis A.M. (1998): Plant-soil interactions in desert. *Biogeochemistry*, **42**:169-187.
- Schlesinger W.H., Andrews J.A. (2000): Soil respiration and the global carbon cycle. *Biogeochemistry*, **48**:7-20.
- Sponseller R.A. (2007): Precipitation pulses and soil CO₂ flux in a Sonoran Desert ecosystem. *Global Change Biology*, **13**:426-436.
- Wohlfahrt G., Fenstermaker L.F., Arnone J.A. III. (2008): Large annual net ecosystem CO₂ uptake of a Mojave Desert

ecosystem. Global Change Biology, 14:1475-1487.

- Xie J., Li Y., Zhai C., Li C., Lan Z. (2009): CO₂ absorption by alkaline soils and its implication to the global carbon cycle. *Environ. Geol.*, **56**:953-961.
- Zhang L., Chen Y., Li W., Zhao R. (2007) Seasonal variation of soil respiration under different land use/land cover in arid region. *Sci. China Ser. D-Earth Sci.*, **50**:76-85.
- Zhu H., Zhao C., Li J., Li Y., Wang F. (2008): Analysis of impact factors on scrubland soil respiration in the southern Gurbantunggut Desert, central Asia. *Environ. Geol.*, 54:1403-1409.